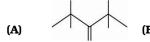


Date Planned ://	Daily Tutorial Sheet-5	Expected Duration : 30 Min
Actual Date of Attempt : / /	Level-1	Exact Duration :

61. $NaBH_4 \rightarrow H^+ \rightarrow Product.$

The product is:

62.
$$\xrightarrow{\text{Mg/ether}} \xrightarrow{\text{1. HCHO}} \text{A, A is}$$
Br



- **63.** Ethanol on reaction with acetic anhydride gives :
 - (A) Acetic ester

(B) Formic ester

(C) Ethanoic acid

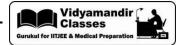
- **(D)** Both acetic ester and ethanoic acid
- 64. OH $\frac{\text{conc. H}_2\text{SO}_4}{\Delta}$ The major product is :

) Both (A) and (B) (

None is correct

CHO.

CHO


- **65.** Methanol and water can be separated from a mixture by :
 - (A) distillation

(B) fractional distillation

(C) evaporation

- **(D)** separating funnel
- 66. An alcohol gave Lucas test in about 15 minutes. When the alcohol was treated with hot concentrated H_2SO_4 it gave an alkene of molecular formula C_4H_8 which on ozonolysis gave C_2H_4O . The structure of alcohol is:
 - (A) CH₃CHOHCH₂CH₃

- **(B)** $CH_3CH_2CH_2CH_2OH$
- (C) $CH_3CHOHCH_2CH_2CH_3$
- **(D)** $(CH_3)_3C OH$

67.
$$0 \xrightarrow{\text{NaBH}_4} 0 \text{P}$$

$$0 \xrightarrow{\text{LiAlH}_4} (Q)$$

Sum of number of alcoholic groups in product (P) and (Q) is:

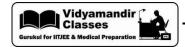
- (A)
- 1
- 2
- (C)
- **(4)** 5
- **68.** Thiols are alcohol analogs in which the oxygen has been replaced by sulphur (e.g. CH_3SH). Given the fact that the S-H bond is less polar than the O-H bond, which of the following statements comparing thiols and alcohols is correct?
 - (A) Hydrogen bonding forces would be the same

(B)

- (B) Hydrogen bonding forces are stronger in thiols
- (C) Hydrogen bonding forces are weaker in thiols
- (D) No comparison can be made without additional information
- **69.** What is the major organic product of the following sequence of reactions?

$$(CH_3)_2CHCH_2OH \xrightarrow{PBr_3} \xrightarrow{Mg} \xrightarrow{CH_2-CH_2} \xrightarrow{H_3O^+} \xrightarrow{} \xrightarrow{O}$$

$$OH \qquad OH \qquad OH \qquad OH \qquad I$$


$$(A) \quad (CH_3)_2CHCH_2CH_3 \qquad (B) \quad (CH_3)_2CHCH_2CH_2CH_3$$

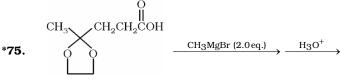
$$(C) \quad (CH_3)_2CHCH_2CH_2OH \qquad (D) \quad (CH_3)_2CHCH_2CH_2OH_3$$

- *70. An organic compound B is formed by the reaction of ethyl magnesium iodide (CH₃CH₂MgI) with a substance A, followed by treatment with dilute aqueous acid. Compound B does not react with PCC or PDC in dichloromethane. Which of the following can be possible structures of A?
- **71.** $CH_3CH = CH_2 \xrightarrow{X} \xrightarrow{Y} CH_3CH_2CHO$. X and Y are respectively:
 - (A) $H_3O^+, MnO_4^-/H^+$

- **(B)** H_3O^+ , PCC/CH₂Cl₂
- (C) $BH_3 \cdot THF / H_2O_2, OH^-, H_2CrO_4$
- **(D)** BH₃ · THF / H₂O₂, OH $^-$, PCC / CH₂Cl₂
- **72.** The structure of the compound that gives a tribromo derivative on reaction with bromine water is :

(A)
$$CH_3$$
 CH_2OH CH_3 OH (D) CH_3

- **73**. Indicate the reagent in the following conversion


(A) H+/CH3OH (B) CH₃ONa

(C) Hg(OAc)₂, CH₃OH

- **(D)** None of these
- $CH_2 O CH_3 \xrightarrow{HBr(conc.)}$ 74.

The product are:

- -CH₂OH, CH₃Br (A)
- CH₂Br, CH₃OH via S_N1
- CH₂Br, CH₃OH via S_N2 (C)

The products formed in above reaction are :

(A)
$$CH_3 - C - CH_2 - CH_2 - CH_3 - CH_3$$

 \odot